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Abstract
Recent studies have found that terrestrial dryness indices like the Palmer Drought Severity Index
(PDSI), Standardized Precipitation Evapotranspiration Index (SPEI), and Aridity Index calculated
from future climate model projections are mostly negative, implying a drying land surface with
warming. Yet, the same models’ future runoff and bulk soil moisture projections instead show
regional signals of varying sign, and their vegetation projections show widespread greening,
suggesting that the dryness indices could overstate climate change’s direct impacts. Most modeling
studies have attributed this gap to the indices’ omission of CO2-driven stomatal closure. However,
here we show that the index-impact gap is still wide even in future-like model experiments that
switch off CO2 effects on plants. In these simulations, mean PDSI, Aridity Index, and SPEI still
decline broadly with strong warming, while mean runoff, bulk soil moisture, and vegetation still
respond more equivocally. This implies that CO2-plant effects are not the dominant or sole reason
for the simulated index-impact gap. We discuss several alternative mechanisms that may explain it.

1. Introduction

Drought is a surface water shortage, usually driven
by below-normal precipitation (P), that negatively
impacts water resource production (i.e. stream run-
off and groundwater recharge) and/or photosyn-
thesis, with societal consequences (e.g. Wilhite and
Glantz 1985, AMS Council 2013). Aridity is a per-
manent, climatological lack of enough P to sup-
port plentiful regional water resources or vegetation
(Budyko and Miller 1974, Middleton and Thomas
1997), which plays a key role in human settlement
patterns (e.g. Seager et al 2018).

However, because water resource production and
photosynthesis are strongly constrained by the evap-
orative environment as well as P, the most effective
methods for quantifying aridity and drought from
climate data require both P and potential evapora-
tion E0. E0 integrates radiation, temperature, humid-
ity, and wind speed to quantify the rate at which
the atmosphere is capable of evaporating surface
water (e.g. Hartmann 2016). The aridity index or AI

(Transeau 1905, Middleton and Thomas 1997) is the
ratioP/E0 of annual climatologicalmeans. The Stand-
ardized Precipitation-Evapotranspiration Index or
SPEI (Vicente-Serrano et al 2010) is the difference
P− E0 smoothed to a user-defined timescale and
transformed to a normal distribution. The Palmer
Drought Severity Index or PDSI (Palmer 1965) is a
bucket model of soil moisture forced by monthly P
and E0. Lower AI and more negative PDSI and SPEI
values indicate drier conditions, with reduced water
resources and vegetation. These indices are widely
used and understood.

According to the standard Penman–Monteith
equation (Monteith 1981, Allen et al 1998), E0 sub-
stantially increases with future greenhouse warming,
mainly due to its dependence on temperature (Scheff
and Frierson 2014). Since projected changes in land
P with warming are much less robust (e.g. IPCC
2013, Greve and Seneviratne 2015), global-scale cli-
mate model studies of AI (Feng and Fu 2013, Fu and
Feng 2014, Scheff and Frierson 2015, Huang et al
2015, Fu et al 2016, Zarch et al 2017, Park et al 2018,
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Wang et al 2021), PDSI (Dai 2013, Cook et al 2014,
Zhao and Dai 2015, Zhao and Dai 2016, Lehner et al
2017), and SPEI (Cook et al 2014, Touma et al 2015,
Naumann et al 2018) almost always obtain wide-
spread drying in future high-emission scenarios. The
same models also project widespread future declines
in near-surface soil moisture SMs (Dai 2013, IPCC
2013, Berg et al 2017) and relative humidity RH
(IPCC 2013, Byrne and O’Gorman 2016), which are
used to argue for the physical relevance of the AI- or
PDSI-based drying projections (e.g. Sherwood andFu
2014, Dai et al 2018).

Yet, as argued above, the core purpose of AI, PDSI,
and SPEI, and the main use of SMs, is to indic-
ate negative impacts to water-resource production
and/or photosynthesis (Roderick et al 2015, Greve
et al 2017, Scheff et al 2017, Scheff 2018). And, the
same models that project widespread global declines
in AI, PDSI, SPEI, SMs, and RH with strong future
warming project much more equivocal, two-sided
changes in water-resource generation (IPCC 2013,
Roderick et al 2015, Zhao and Dai 2015, Zhao and
Dai 2016, Swann et al 2016, Milly and Dunne 2016,
Milly and Dunne 2017, Greve et al 2017, Scheff et al
2017) and deep-layer soil moisture SMd (Berg et al
2017, Berg and Sheffield 2018, Greve et al 2019).
Furthermore, these models project ubiquitous future
increases in photosynthesis (Greve et al 2017, Greve
et al 2019, Scheff et al 2017, Mankin et al 2018) and
leaf coverage (Mankin et al 2019), a.k.a. ‘greening.’
Thus, it is not clear if the AI, PDSI, and SPEI pro-
jections are actually relevant for warming impacts
on water availability, nor (likewise) if the models’
prognostic runoff, SMd, and/or vegetation projec-
tions are reliable. Scheff (2018) and Scheff et al
(2017) show that this ‘index-impact gap’ is also clear
in global observations during CO2-driven climate
changes (both recent and geologic), lending it addi-
tional credence. However, it is much less pronounced
in certain regions, such as the American Southw-
est (Cook et al 2015, Ault et al 2016), particularly
for SMd.

What is the reason for this discrepancy? Most
of the above studies argue that projected future AI,
PDSI and SPEI do not resemble projected climate
change impacts in many places mainly because they
do not account for the beneficial effect of elevated
CO2 on plant water requirements, which tends to
reduce evapotranspiration (ET) and increase pho-
tosynthesis (Roderick et al 2015, Swann et al 2016,
Greve et al 2017, Greve et al 2019, Milly and Dunne
2017, Scheff et al 2017). Yang et al (2019) and Yang
et al (2020) modify the standard Penman–Monteith
equation to include this stomatal effect and find that
the resulting AI and PDSI come much closer to the
models’ hydrologic projections, and Lemordant et al
(2018) show that CO2-plant effects dramatically alter
key model hydrologic outputs. Certainly, the bulk of
projected future greening would not occur without

these simulated CO2 effects (Arora et al 2013, Shao
et al 2013).

However, many other proposed causes of the
index-impact gap in models, especially with regard
to hydrologic impacts (i.e. water resources and SMd),
are unrelated to CO2-plant effects. Zhao and Dai
(2015), Dai et al (2018) and Mankin et al (2018)
argue that the gap occurs partly because the increase
in instantaneous P rate in a warming world drives
greater runoff production for the same long-term
total P. Observed and projected shifts in P towards the
hydrological wet season (e.g. Chou et al 2013, Allen
and Anderson 2018) would have the same effect, and
Berg et al (2017) argue that the gap between SMd

and SMs also stems from rectification of the seasonal
cycle. Massmann et al (2019) show that warming
itself may reduce ET by closing stomata (Novick et al
2016), apart from CO2. Further, Mankin et al (2019)
find that in much of the mid-latitudes, the projec-
ted increase in growing-season length due to CO2

and warming cancels any plant water savings from
CO2-induced stomatal closure, so that the net hydro-
logic impact of plant responses to CO2 and warm-
ing is often negative, not positive. Lehner et al (2019)
argue that models’ prognostic runoff responses to
climate change are biased positive, because flaws in
the land hydrologic parameterizations causemodeled
runoff to be too sensitive to P, and not sensit-
ive enough to warming. Finally, Milly and Dunne
(2016) and Vicente-Serrano et al (2020) argue that
Penman–Monteith E0 (and thus AI, PDSI and SPEI)
is not always relevant to real watersheds under climate
change, regardless of CO2 effects.

On the vegetation side, CMIP-type models gen-
erally do not include any representation of drought-
driven mortality (Anderegg et al 2015, Allen et al
2015), and often only minimal representations of
vegetation heat stress (Peñuelas et al 2017, Brodribb
et al 2020) and nutrient constraints (e.g. Wieder et al
2015). Thus, their strong greening projections under
highCO2 are likely overestimates.Mankin et al (2018)
and Mankin et al (2019) argue that a substantial part
of the projected greening (and resulting ET increase)
is due to warming rather than CO2 effects, especially
in the extratropics where temperature may be a more
important limiting factor thanmoisture. More gener-
ally, not all vegetation is vulnerable to water shortage,
so even at constant CO2, vegetation changes would
not always be expected given dryness-index changes.
Furthermore, with some exceptions (Donohue et al
2013, Zhu et al 2016), most studies of observed veget-
ation greening to date (e.g. Fensholt et al 2012,
Mishra et al 2015, Ju and Masek 2016) invoke CO2

changes minimally, or not at all. Instead, they attrib-
ute most greening to factors such as temperature
and precipitation changes, topographic effects, fire
suppression and other disturbance regime changes,
land use change, and woody plant encroachment on
grasslands.
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Thus, it is not at all clear that CO2-plant effects are
the main reason why simulated and observed mean
eco-hydrologic impacts of climate change are not as
negative as AI, PDSI, or SPEI inmany regions. Indeed,
Milly and Dunne (2016) found that in one model,
the gap between AI and runoff responses persisted
even when those effects were switched off, at least in
the global average. Here, we extend that comparison
to many more models, variables, and regions, show-
ing that even when CO2-plant effects are suppressed,
mean AI, PDSI, and SPEI (index) projections under
strong warming scenarios aremuchmore widely neg-
ative than mean runoff, SMd, or vegetation (impact)
projections under the same scenarios.

2. Data andmethods

We examine monthly output equatorward of 55◦

from 11 climate models in the Coupled Model
Intercomparison Project phase 6 (CMIP6; Eyring
et al 2016), listed in table S1 in supplement-
ary material (available online at stacks.iop.org/
ERL/16/034018/mmedia). We compare the results
of two idealized modeling experiments that each
start from a constant-forcing control run and then
strongly warm the planet by increasing CO2 1% per
year for 140 years, i.e. from 280 ppm in year 1 of the
experiment to ≈1130 ppm in year 140 of the exper-
iment, analogous to high-emission future warm-
ing scenarios like RCP8.5. In experiment ‘1pctCO2’,
both the vegetation and radiation schemes ‘see’ this
large CO2 increase, as in the experiments discussed
in section 1. Experiment ‘1pctCO2-rad’ (Jones et al
2016) is identical to 1pctCO2 except that the veget-
ation schemes instead ‘see’ a constant 280 ppm of
CO2, so any index-impact gap in 1pctCO2-rad must
occur for a reason other than simulated CO2-plant
effects. These experiments are solely designed to test
the CMIP models’ response to high CO2; they have
no forcings other than this idealized 1%-per-year
CO2 increase and they do not directly correspond to
any particular real years, though CO2 levels in the
later years of the simulations are comparable to high-
emission future scenarios.

For each model, the climatological annual-mean
responses of P, E0, AI, PDSI, SPEI, RH, SMs, SMd,
water resource generation (i.e. total runoff Q), run-
off ratio Q/P, photosynthesis, leaf area index LAI,
and evaporative fraction EF are quantified using the
difference between years 111–140 (mean CO2 ≈970
ppm) and years 1–30 (mean CO2 ≈325 ppm) of the
‘r1i1p1’ run, except where noted in table S1. (Other
runswould be expected to behave similarly; ‘r1i1p1’ is
specified just for reproducibility.)Monthly E0 is com-
puted using the standardPenman–Monteith equation
(Allen et al 1998) and AI for each 30-year period
is the ratio of 30-year-mean P to 30-year-mean E0,
all as in Scheff et al (2017). PDSI and 12-month
SPEI are computed from monthly P and E0 as in

Cook et al (2014) using years 1–30 as the reference
period; SPEI is set to−2.33 (100-year drought) when
P− E0 is less than the origin of the reference distri-
bution (S Vicente-Serrano, pers. comm.). As in Scheff
et al (2017), monthly RH is defined as monthly-mean
vapor pressure divided by saturation vapor pressure
at monthly-mean temperature, for consistency with
the E0 calculation.

SMs uses the ‘mrsos’ output (mm of water in the
top 10 cm of the soil), and SMd is derived by sum-
ming the ‘mrsol’ output (mm of water in each soil
layer) to a depth of 2 m, using a fraction of the bot-
tom layer if necessary. They are each converted to
volumetric water content (m3 m−3), by dividing by
100 and 2000 mm respectively. Q is calculated as P
minus ET rather than using model runoff output, to
emphasize total water-resource generation and avoid
inconsistencies in how models defined runoff. Q/P,
which AI predicts in the present climate (Gentine et al
2012), is the ratio of 30-year means. Photosynthesis
is quantified using gross primary productivity (GPP;
‘gpp’ output), which is the flux of carbon through
the stomata (Bonan 2015) and thus the most water-
linked metric. EF, a close cousin of the Bowen ratio,
is the fraction of the 30-year-mean total turbulent
heat flux (LH+ SH) made up by the latent heat flux
LH; decreases in EF represent drought impacts to the
atmosphere.

For each variable, the responses are nearest-
neighbor interpolated to a common 3◦ grid, and
multi-model statistics are taken. For SMd, only
nine models are available (table S1); restricting
the remainder of the study to only those mod-
els does not substantially change the results below.
We also conduct a similar analysis on the CMIP5
(Taylor et al 2012) 1pctCO2 vs. ‘esmFdbk1’ exper-
iments, with details and results in supplementary
material.

3. Results

Figure 1 maps the median responses to the ‘stand-
ard’ 1pctCO2 experiment, in which both climate
and vegetation respond to the large CO2 increase.
The index-impact gap common to coupled-model
high-emission experiments is apparent: RH, AI, SPEI,
PDSI, and SMs (figures 1(a)–(e)) robustly and widely
decline, but EF, SMd,Q/P, andQ respondmuchmore
heterogeneously (i.e. more like P; figures 1(f)–(j), and
LAI andGPP robustly and near-ubiquitously increase
(figures 1(k)–(l)). However, EF still resembles PDSI
in some places, facially suggesting that PDSI could be
relevant for atmospheric impacts (Dai et al 2018) des-
pite its dissimilarity to water-resource and ecological
impacts. Figure S1 in supplementary material repro-
duces figure 1 but using standardized changes; results
are similar, except that Q and Q/P responses become
much weaker than the other metrics, reinforcing the
sense of a gap.
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Figure 1.Multi-model median differences between years 111–140 (mean CO2 ≈ 970 ppm) and 1–30 (mean CO2 ≈ 325 ppm) of
the 1pctCO2 CMIP6 experiment, in which vegetation responds to the CO2 increase. Black dots show where at least 75% of the
models agree on the sign of the change (i.e. where the change is robust.) Variables without units given are dimensionless. Year
numbers do not directly correspond to any particular real-world years, and differ only in their CO2 concentration.

Figure 2 maps the responses to the 1pctCO2-rad
experiment, in which climate responds to the large
CO2 increase, but vegetation does not. Despite the
lack of any CO2-plant effects, the index-impact gap is
still wide, especially for hydrologic impacts: RH, AI,
SPEI, PDSI, and SMs (figures 2(a)–(e)) again show
widespread robust declines, but the responses of Q/P
(figure 2(h)) and especially Q (figure 2(j)) are again
much more two-sided. In particular, the Americas
are dominated by AI, SPEI, and PDSI ‘drying’, yet
have less consistent decreases in Q/P, and regional

decreases and increases in Q. In Africa and Australia,
Q and Q/P increases are actually more extensive than
decreases, despite strongly drying AI, PDSI and SPEI.
However, in general, the gap is not quite as large as
in figure 1, both because RH, AI, SPEI, and PDSI dry
slightly less, and becauseQ andQ/P dry slightlymore,
consistent with Swann et al (2016). Thus, CO2 effects
still appear to cause some of the gap, by reducing ET
and thus increasing both E0 and Q in figure 1 relat-
ive to figure 2 (Brutsaert and Parlange 1998, Berg et al
2016).
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Figure 2. As figure 1, but for the 1pctCO2-rad experiment, in which vegetation does not respond to the CO2 increase.

SMd (figure 2(g)) declines more robustly than
Q, but not always as robustly as AI or SPEI, espe-
cially in Eurasia, North America and Australia. The
declines are still weaker and less consistent than those
in SMs (figure 2(e)). Interestingly, EF (figure 2(f))
responds much more like P (figure 2(i)) than like
the indices, SMs, or even SMd, implying that the
relative consistency of EF with PDSI in figure 1
may just be a fortuitous effect of CO2 reducing ET.
Finally, as expected, LAI and GPP (figures 2(k)–(l))
lose their large, near-ubiquitous increases (which are
likely overestimates as discussed in section 1) and
resemble the indices much more closely, particularly

in the tropics and subtropics. This implies that CO2

effects can explainmuch of the simulated low-latitude
gap between index and vegetation responses in high-
emission scenarios. Yet, LAI andGPP still change little
(or even increase) in many regions where AI, SPEI
and PDSI strongly decline, particularly in the mid-
latitudes and Australia. Figure S2 reproduces figure 2
using standardized changes; again themain difference
is relative weakening of the Q and Q/P responses.

Figure 3 distills figures 1 and 2 by plotting each
panel as a single point in area-with-robust-drying
vs. area-with-robust-wetting space, color-coded by
type of metric (where ‘robust’ means stippled on
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Figure 3. Percent of land area with multi-model robustly projected (i.e. stippled) decreases (x-axis) and increases (y-axis) in each
variable on figure 1 (left; vegetation responds to CO2) and figure 2 (right; vegetation does not respond to CO2). Climate variables
and indices are in black, vegetation impacts in green, water-resource impacts in dark blue, soil moisture impacts in brown, and
atmospheric impacts in light blue. Colored lines mark ratios of robust-decrease area to robust-increase area.

figures 1 or 2; that is, ⩾75% intermodel agreement).
It is immediately apparent that while the gap between
the index (AI, PDSI, SPEI) and hydrologic impact (Q,
Q/P) projections under a high-emission scenario is
larger with CO2-plant effects on (left), it is still large
even with CO2-plant effects turned off (right). In the
latter case, for PDSI, more than four times as much
land area has robust drying as robust wetting, yet
the areas of robust Q increase and robust Q decrease
are equal (figure 3, right), complicating the interpret-
ation of PDSI as a water-resource proxy under cli-
mate change (e.g. Cook et al 2009). For AI, more
than 10 times as much land area has robust drying
as robust wetting, yet the area of robust Q/P decrease
is only twice the area of robust Q/P increase, des-
pite the theoretical basis for AI as the primary driver
of Q/P variation in the present climate (Budyko and
Miller 1974).

For SMd and (especially) GPP and LAI, the gap
from AI, PDSI, and SPEI responses without CO2-
plant effects (right) is much smaller than with CO2-
plant effects (left), mainly because the massive GPP
and LAI increases are much reduced. However, the
gap is still noticeable: similar toQ/P, robust GPP and
SMd decreases are only about 2–3 times more wide-
spread than respective increases, even though robust
PDSI, AI and SPEI decreases are over 4, 10, and 20
times more widespread than respective increases. LAI
more strongly tends to decrease, similar to PDSI, but
still not as much as AI, SMs or SPEI. Thus, the indices
still do not seem to be particularly reliable proxies
for projected future vegetation-related impacts, even
in a world where CO2 does not affect vegetation.
As discussed above in the context of figure 2, this
is particularly so in parts of the midlatitudes, where
growing-season lengthening is an important driver of

vegetation increases (e.g. Mankin et al 2018, Mankin
et al 2019). Also, EF is even farther from the indices
when CO2-plant effects are off (right) than on (left),
confirming that any apparent relevance of the indices
for EF in figure 1 is just a fortuitous consequence of
CO2 effects on transpiration.

We quantify several of the index-impact gaps in
greater detail by mapping disagreement between the
impact variables (Q, Q/P, SMd, GPP) and the indices
and similar variables (AI, PDSI, SPEI, SMs) across
the multi-model ensemble (figure 4). Specifically, we
map the percentage of models that obtain increases
in impact variables despite decreases in index-type
variables (minus the percentage that do the oppos-
ite, which is much smaller). With CO2-plant effects
on (left column), a large proportion of the models
simulate hydrologic and vegetation increases despite
declining indices, as expected (though there are also
regional exceptions). With CO2-plant effects turned
off (right column), this proportion persists, albeit
slightly diminished. Again, the gaps between Q and
Q/P and the indices (figures 4(a)–(f)) and between
SMd and SMs (figures 4(g)–(h)) are particularly per-
sistent. (Some very dry regions do have the opposite
sign gap, but Q≈ 0 in such places.)

In contrast, the prevalence of SMd increases des-
pite PDSI declines (figure 4(i)) is more noticeably
reduced once CO2 effects are turned off (figure 4(j)),
while regions with the opposite sign gap are expan-
ded. This relative agreement makes sense, since PDSI
is a fundamentally a model of SMd. Finally, the very
large proportion of models that increase GPP despite
index declines (e.g. figure 4(k)) largely vanishes or
reverses in the tropics when CO2 effects are turned
off, but still noticeably persists in the mid-latitudes
(figure 4(l)); results are similar for LAI. This again
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Figure 4. Percent of models with increasing A minus percent of models with increasing B (equivalently, percent of models with
increasing A and declining B minus percent of models with increasing B and declining A), for selected pairs of variables A and B.
Left: 1pctCO2 (vegetation responds to CO2). Right: 1pctCO2-rad (vegetation does not respond to CO2). In panels (g–j), both
variables use only the 9 models that had SMd for both experiments (table S1).

suggests that growing-season lengthening, in addition
to CO2, is a key driver of the gap between index and
vegetation responses in the midlatitudes.

Figures S3–S6 reproduce figures 1–4 but using
nine CMIP5models, for cleaner comparison with the
literature cited in section 1. The results are very sim-
ilar, though the index-impact gaps (both with and
without CO2) tend to be even wider in CMIP5 than
inCMIP6.Whether this is due tomodel improvement
going from CMIP5 to CMIP6, or just different model
selection (tables S1 vs. S2), is unknown. The lack of
index-impact gaps in CMIP5 in parts of the American

Southwest (Cook et al 2015, Ault et al 2016) is also
apparent in figure S6.

4. Discussion

In short, figures 1–4 and S3–S6 show that while some
simulated index-impact gaps under high-emission
scenarios are in fact driven by CO2-plant effects
(e.g. low-latitude greening despite index declines, or
PDSI declining more than SMd), most of the others
(e.g. Q, Q/P and mid-latitude vegetation increasing
despite index declines, and SMd declining less than
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SMs) persist without any CO2-plant effects. Thus,
contrary to studies like Swann et al (2016), Milly
and Dunne (2017), Scheff et al (2017), and Greve
et al (2017), but in agreement with Mankin et al
(2019) and Greve et al (2019), we find that CO2-plant
effects are not the sole or dominant reason that pro-
gnostic impact outputs disagree with PDSI, SPEI, and
AI under future global warming scenarios. Instead,
other mechanisms must be in play to explain most of
these gaps.

What could those other, non-CO2 factors be?
The easiest explanations are that the indices are just
simple formulas, and should not be expected to reflect
complex climate change impacts in the first place
(e.g. Milly and Dunne 2016, Greve et al 2019)—
and/or that mean changes in runoff and vegeta-
tion production are not actually what the indices
are built to measure. However, the indices all have
long histories of successful use in the present climate
as hydrological and ecological impact proxies, con-
tinue to be frequently used to quantify future cli-
mate change’s broad dryness effects (e.g. Lehner et al
2017, Naumann et al 2018, Wang et al 2021), rest on
solid theoretical foundations (Penman–Monteith E0,
the Budyko curve, soil moisture modeling, the com-
plementary principle), and do in fact agree with the
impact projections in some places (figures 4 and S6;
Cook et al 2015, Ault et al 2016). Where there are dis-
agreements, they are mostly in one direction (indices
drier than simulated impacts; figure 4) evenwith CO2

effects turned off. Thus, it is important to understand
where the differences come from, so as to better assess
the relevance and applicability of both types of future
projections.

For water-resource (Q and Q/P) responses, there
is no shortage of potential non-CO2 mechanisms
by which they could skew more positive than index
responses, as detailed in section 1. Again, these
include direct closure of leaf stomata by high tem-
peratures and vapor-pressure deficits (Novick et al
2016, Massmann et al 2019), concentration of P
into fewer, heavier events (e.g. Mankin et al 2018,
Dai et al 2018), and concentration of P into the
hydrological wet season (e.g. Chou et al 2013), all
of which are accounted for in the models but not
in the indices. Biases in model Q and Q/P sensitiv-
ity to P and temperature (Lehner et al 2019) could
also be important. More broadly, some of the gap
between Q and PDSI responses could also simply be
that PDSI is a soil-moisture model, despite its fre-
quent tacit use to indicate runoff scarcity. However,
there is no similar ‘apples and oranges’ argument for
the large gap betweenQ/P andAI responses, sinceQ/P
is the quantity that AI classically predicts (Budyko
and Miller 1974, Gentine et al 2012). Planned off-
line land-modeling work will test many of the above
mechanisms.

For vegetation-related impacts (GPP and LAI),
CO2 clearly causes the simulated departure from

the indices in the tropics and subtropics (compare
figures 1(d), (l) and 2(d), (l)). However, there is
still a large non-CO2-related gap in parts of the
midlatitudes, most easily explained by the length-
ening of temperate growing seasons with simulated
global warming (e.g. Mankin et al 2019), as stated
in section 3. Whether a longer growing season could
overcome increased future drought stress to cause
greening in the real-world midlatitudes absent CO2

effects is far from certain. However, observations to
date (Zhu et al 2016) show that greening has been
much more prevalent than de-greening at all latit-
udes, including the mid-latitudes. (As discussed in
section 1, many studies also invoke disturbance, mor-
tality, and land-use change processes to explain the
observed greening, but those are largely absent from
the CMIP warming simulations, so could not be the
main causes of the future simulated greening.)

Likewise, the almost total persistence of the gap
between SMd and SMs responseswhenCO2 effects are
turned off strongly suggests that its main cause is the
seasonal mechanism proposed by Berg et al (2017),
rather than plant savings of SMd due to elevated CO2.
Similarly, the gap between EF and index responses is
even strongerwhenCO2 effects are off, so itmust have
a non-CO2 cause, likely the basic thermodynamic EF
increase with warming and/or the strong constraint
of EF by radiation and P (Scheff 2018).

As a final caveat, these simulations only examine
transient climate responses, rather than fully equilib-
rated climate responses. Thus, it is not clear from this
study whether the index-impact gaps, and their attri-
bution to CO2-plant effects vs. warming, would per-
sist over very long time scales on which vegetation
(and thus hydrology) could further evolve. However,
since the century-scale transient climate response
is most relevant to climate change on human time
scales, and since most future simulations are also
transient, the simulations examined here are still of
immediate relevance.

5. Conclusion

A number of studies find that simple climatic
dryness and drought indices, such as the Aridity
Index (AI), Palmer Drought Severity Index (PDSI),
and Standardized Precipitation-Evapotranspiration
Index (SPEI), indicate muchmore widespread drying
under strong future global warming scenarios than
implied by high-complexity models of hydrology and
vegetation. Many of these studies ascribe these sim-
ulated ‘index-impact gaps’ to the direct effects of
very high CO2 on plant physiology. To the contrary,
here we show that for hydrology and for mid-latitude
vegetation, these gaps strongly persist even in spe-
cialized simulations (CMIP6 1pctCO2-rad; CMIP5
esmFdbk1) in which direct CO2-plant effects are
completely turned off. This strongly suggests key non-
CO2 cause(s) for the modeled index-impact gaps for
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hydrology and for mid-latitude vegetation. Future
work will test several candidate causes for the hydro-
logic index-impact gap from the literature using
land-modeling experiments, and will also analyze the
index-impact gaps in observations.
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